İLK ÇAĞ MAĞARA İNSANI VE ARİTMETİK
İlkçağ insanı (ilkel insan, mağara insanı), rakam ve sayıları kullanmak ihtiyacını duymuştur. Bu devir insanları, ihtiyaçlarını kaydedip saklamasını da biliyordu. Avladıkları hayvanların veya sürüsündeki koyunların sayılarını belirtmek için, yaşadıkları mağara duvarlarına çizikler çizmişler, bir ağaç dalına çentikler yapmışlardır. Bazen de, ipe düğüm atmışlar, veya çakıl taşlarını kullanmışlardır .
Bu devrin, 13-15 yaşındaki insanı, koyun ve geyik gibi varlıkları, ok gibi eşyaları sayabilmek için, ufak yuvarlak çakıl taşlarına sahip olması, veya kesilmiş bir ağaç dalı (sopa) üzerine çentik yapması icap edecekti. Bir taş veya sopa Üzerinde işaretlenmiş bir adet çentik, tek koyunu ifade ederdi. Belli bir zaman sonra, eğer her bir taş veya çentik için bir koyun yoksa, o insan bir veya birkaç koyunun kayıp olduğunu anlardı. Bu devrin insanları; sayıları bir yere kaydedip saklanmasını da biliyorlardı.
İlkçağ insanları, sayılar için kil tabletler üzerine çizikler kazmayı, veya kesilmiş ağaç dalına çentikler yapmaya başlamakla, ilk defa, sayıları yazılı olarak ifade etmiş oluyorlardı. İlkçağ insanının kullandığı bu işaretler, rakam ve sayıların ilk yazılı ifadeleridir.
Bunların yanında; ilkel insanlar, sayıları belirtmek için, değişik ses ve kelimeler de kullanmışlardır. Bugün sayıları belirten standart hale gelmiş sembol (şekil) ve sözcükler vardır. Günümüzde; sayılar, hem 1, 2, 3, ... gibi sembollerle ve hem de; bir, iki, üç, ... gibi kelimelerle ifade edilmektedir. Bugün dört adet kalemi, "dört kalem" kelimesi ile belirtip "4" sembolü ile gösterebiliyoruz.
Tarih bakımından biraz daha ilerlediğimizde, karşımıza Eski Mısırlılar ve Mezopotamyalılar çıkar.
MATEMATİĞİN TEMEL İLKELERİ
Her kelimeyi tanımlamak mümkün olmadığı gibi, her hükmü de ispat etmek mümkün değildir. Bir kelime, başka kelimelerle tanımlanır, bu sonuncular da, daha başka kelimelerle tanımlanır. Böylece kullanılan her kelimeyi tanımlamak için, sonsuz şekilde geriye gitmek gerekmektedir ki, bunun imkansız olduğu ortaya çıkar. Bunun gibi; matematikte, bir teorem, başka teoremlerle, o teoremler de başkalarıyla İspat edilir. Her şeyi ispat için, imkansız olan, bir sonsuz geriye gitme lazım geldiğinden, ister istemez bir yerde durmak icap ediyor. Şu halde, nasıl ki, tanımlanamayan şeyler varsa, öylece ispat edilmeyen şeyler de vardır. İspat edilemeyen bu şeylere, matematikte prensipler adı verilir. Gerçi, prensipler ispat edilemezler, fakat her şey bunlara dayanarak ispat edilir. Bunların ispatsız kabul edilmelerinin sebebi budur.
Matematiğe ait, sistematik eserler meydana getiren Eski Yunan (Grek) matematikçileri, bazı hükümleri ispatsız kabul etmek lazım geldiğinin farkına varmışlardır. Bunlardan Öklid, Elementler adlı eserinin başında, bu gibi hükümleri ifade etmiştir. Bunlara da, <> adını vermiştir. Zamanla, bu kabulü istenen şeylerin sayısı değişmiştir. Örneğin, 19. yüzyıla kadar, matematikçiler, Öklid'in ispatsız kabul ettiği ve Öklid Postülatı denilen <> şeklindeki hükmünü ispat etmeye çalışmışlardır. Fakat, daima ispatsız birtakım hükümler, yeni yeni prensipler kabul edilmiştir.
Eskiden beri, matematikçiler tarafından, matematiğin temel prensipleri üç grupta toplanmıştır. Bunlar:
A) Tanımlar
B) Aksiyonlar
C) Postülatlar